Physics 114 - Spring 2010 - Problem Set 7 (Due at end of class on March 18)

1) $27-69$
2) $28-3$
3) $28-13$
4) $28-18$
5) $28-19$
6) $28-26$
7) $28-35$
8) Review your class notes from March 4 and 16 where we did problem 28-31. Then do problem 28-32.
9)

A wire lies parallel to a conducting pipe of radius R and thickness $1 / 4 \mathrm{R}$. The wire lies at a distance of 3 R from the center of the pipe. The wire and pipe are configured perpendicular to the paper, as shown below in a sketch. The pipe carries a uniform current of magnitude I directed into the paper. The current is in the region shown. That is to say, the interior of the pipe ($\mathrm{r}<3 / 4 / \mathrm{R}$) is empty and carries no current.
(a) Determine the magnitude and direction of current in the wire which will cause the magnetic field at point P to be zero.
(b) Given your answer to part (a), what is the magnitude and direction of the magnetic field at the center of the current-carrying pipe?

